Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Syst ; 47(1): 12, 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2209440

ABSTRACT

BACKGROUND: Presenting symptoms of COVID-19 patients are unusual compared with many other illnesses. Blood pressure, heart rate, and respiratory rate may stay within acceptable ranges as the disease progresses. Consequently, intermittent monitoring does not detect deterioration as it is happening. We investigated whether continuously monitoring heart rate and respiratory rate enables earlier detection of deterioration compared with intermittent monitoring, or introduces any risks. METHODS: When available, patients admitted to a COVID-19 ward received a wireless wearable sensor which continuously measured heart rate and respiratory rate. Two intensive care unit (ICU) physicians independently assessed sensor data, indicating when an intervention might be necessary (alarms). A third ICU physician independently extracted clinical events from the electronic medical record (EMR events). The primary outcome was the number of true alarms. Secondary outcomes included the time difference between true alarms and EMR events, interrater agreement for the alarms, and severity of EMR events that were not detected. RESULTS: In clinical practice, 48 (EMR) events occurred. None of the 4 ICU admissions were detected with the sensor. Of the 62 sensor events, 13 were true alarms (also EMR events). Of these, two were related to rapid response team calls. The true alarms were detected 39 min (SD = 113) before EMR events, on average. Interrater agreement was 10%. Severity of the 38 non-detected events was similar to the severity of 10 detected events. CONCLUSION: Continuously monitoring heart rate and respiratory rate does not reliably detect deterioration in COVID-19 patients when assessed by ICU physicians.


Subject(s)
COVID-19 , Respiratory Rate , Humans , Heart Rate , COVID-19/diagnosis , Monitoring, Physiologic , Vital Signs/physiology
2.
Cancer Discov ; 12(2): 299-302, 2022 02.
Article in English | MEDLINE | ID: covidwho-1723971

ABSTRACT

The high cost of many new anticancer medicines significantly impedes breakthrough discoveries from reaching patients. A commonly heard refrain is that high prices are necessary to compensate for the high costs of research and development (R&D). Yet, there are promising policy proposals aimed at improving affordability without compromising innovation. In seeking new policy solutions, we argue for a shift away from entrenched opinion toward an evidence-based discourse that is grounded in experiments and real-world pilot studies. We offer a novel perspective and practical recommendations on how empirical evidence could and should be gathered to inform evidence-based policy interventions that lead to sustainable medicine prices in oncology.See related article by Franzen et al. (Cancer Res Commun 2022;2:39-47).


Subject(s)
Antineoplastic Agents/economics , Costs and Cost Analysis , Health Services Needs and Demand , Evidence-Based Medicine , Humans , Policy , United States
SELECTION OF CITATIONS
SEARCH DETAIL